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Abstract Since the passage of the Dodd Frank Wall Street Reform and Consumer Protection 

Act, many financial institutions have been developing and validating stress testing models and 

methodologies.  A key feature of the Act is the Dodd Frank Annual Stress Test (DFAST) 

consisting of regulator prescribed stress scenarios.  However, little is known about the extent of 

the stress implied by the scenarios beyond their ordinal descriptions as baseline, severe, and 

severely adverse.  In this paper, Kullback-Leibler divergence is suggested as a mechanism to assess 

how much stress is implied by each scenario.  In general, the results suggest that the adverse 

scenario is a reasonably stressful scenario while the severely adverse scenario may be consistent 

with such an unprecedented level of stress that it may actually undermine its usefulness as a 

plausible scenario for stress testing.  An example is also provided showing how the methods 

developed can be applied to assist in the identification of plausible and consistent stress for non-

DFAST variables. 
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1 Introduction 

With the passage of the Dodd Frank Wall Street Reform and Consumer Protection Act (hereafter 

Act or Dodd-Frank) many financial companies have been developing and validating stress testing 

models and methodologies.  A key feature of the Act is detailed in Section 165(i) which requires 

nonbank financial companies supervised by the Board of Governors (BOG) and bank holding 

companies to conduct semiannual stress tests (hereafter Dodd-Frank stress test or DFAST) and 

all other financial companies with total consolidated assets of $10 billion or more to conduct 

annual stress tests.  The stress tests are designed to determine whether these companies have the 

capital necessary to absorb losses as a result of adverse economic conditions.  Capital has been 

shown by Berger and Bouwman (2013) to increase all banks’ performance during banking crises 

and additionally small bank performance during market crises as well as normal times.  Stress test 

results must be reported to the BOG and to the company’s primary financial regulatory agency1. 

According to the specifics of DFAST, the BOG must provide at least three different sets of 

conditions or scenarios under which the stress tests are to be conducted.  The most recent release 

of baseline, adverse, and severely adverse DFAST scenarios consist of 16 macroeconomic variables 

describing economic developments within the United States and essentially 12 macroeconomic 

variables (three variables in four countries or country blocks) describing international economic 

conditions spanning the 13 quarters from Q3 2014 to Q4 20172.  The scenarios are not meant to be 

interpreted as BOG predictions but rather hypothetical scenarios that, as noted above, are 

designed to be used to assess the financial strength of companies and their resilience to adverse 

economic environments.  Financial companies would typically build their stress testing models 

around these or related economic variables that more closely influence their businesses. 

Balasubramnian and Cyree (2014) conclude there is evidence that suggests market 

discipline on banking firms appears to have improved of late.  Even so, several important risk 

management questions face financial companies especially in light of the DFAST portion of the 

Act.  Perhaps first among them is the question of which macroeconomic variables should be used 

when conducting stress testing?  Financial companies are free to use whatever macroeconomic 

variables make the most sense for their businesses.  For example, a financial company with only a 

domestic footprint would likely only consider the domestic macroeconomic variables and more 

                                                           

1 The relevant regulatory agencies are the Board of Governors of the Federal Reserve System, Office of the Comptroller of the 

Currency, and the Federal Deposit Insurance Corporation. 
2 The scenarios are discussed in detail in “2015 Supervisory Scenarios for Annual Stress Tests Required under the Dodd-Frank Stress 

Testing Rules and the Capital Plan Rule” Board of Governors of the Federal Reserve System, 2014 and in Section 4 of this paper. 
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likely a subset of these variables.  In addition, some companies may find that macroeconomic 

variables that are not a part of the BOG’s set of variables may make more sense for their 

businesses.  Smaller regional companies, for example, may find that the nationally oriented 

macroeconomic variables are less useful for stress testing their portfolios.  In such cases, the 

question of which economic variables to use, and how much stress to apply to emulate the BOG’s 

adverse and severely adverse scenarios, becomes much more challenging.   

A related question that is perhaps more fundamental has less to do with which are the 

most important macroeconomic variables for a company to choose and more to do with how much 

stress is implied by the scenarios in the first place.  This is an especially important question for 

many financial companies in the $10 billion to $50 billion asset range in that these institutions are 

less likely to have the personnel on site with the technical expertise to develop stress testing 

models internally.  Data are also likely an issue and it could be the case that more simple 

approaches to stress testing are warranted as a precursor to developing more complex stress 

testing models.  For example, it is possible that a $10 billion financial company with a small 

regional footprint should initially approach stress testing within a relatively simple Value-at-Risk 

(VaR) framework given their endowment of technical expertise and paucity of data.  If so, the 

question of how much VaR stress to apply to be consistent with the BOG scenarios is critical to 

determine. 

The central purpose of this paper is to report on an analysis of the severity of the DFAST 

stress testing scenarios set forth by the BOG.  In section 2, some recent stress testing literature is 

reviewed and Kullback-Leibler (KL) divergence is discussed as one possible approach for 

measuring the amount of stress in the prescribed DFAST scenarios.  The discussion is facilitated 

by exploiting a well-known linkage between primal and dual relative entropic models.  Presented 

in Section 3 are two empirical examples using recently published data that help firm up the 

linkage between financial stress and the concept of KL divergence.  In section 4, the main focus of 

the research is presented which is the estimation of the joint density for several of the BOG’s 

macroeconomic variables and the subsequent quarterly measurement of KL divergence associated 

with each scenario.  A simple example is also presented that shows how the models and methods 

developed here might be applied to generate a scenario path for a variable that is not one of the 

BOG variables, but is consistent with a given BOG scenario.  Concluding remarks are presented 

in Section 5. 
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2 Plausible Stress and Kullback-Leibler Divergence 

2.1 Stress Testing and Plausibility 

While more recent tumult in the capital markets has garnered considerable attention with respect 

to the need for systematic approaches to stress testing, the idea is not new3.  As examples, the 

Basel Accords and the concept of VaR both predate DFAST.  Bangia et al. (2002) cite the turmoil 

in the capital markets in the late 1990s as a significant driver of the need for systematic stress 

testing of banks’ portfolios.  Since then, advances in the theory and application of stress testing 

methodologies have continued to develop.  Recent examples include Abdymomunov and Gerlach 

(2014) who propose a new method for generating yield curve scenarios for stress tests, Alexander 

and Sheedy (2008) who propose a methodology for stress testing in the context of market risk 

models that can incorporate both volatility clustering and heavy tails, and Huang et al. (2009) 

who propose a framework for measuring and stress testing the systematic risk of a group of major 

financial institutions. 

As noted by Abdymomunov and Gerlach (2014), stress testing scenarios are generally 

either historical or handpicked.  Varotto (2012), for example, discusses the plausibility of the 

recent Great Recession as a historical scenario while Fender et al. (2001) reports that many banks 

use Black Monday 1987 as a plausible historical scenario when stress testing equities.  By contrast, 

an example of a handpicked scenario is presented in Miu and Ozdemir (2009) who develop a 

macrofactor stress testing model and apply the model to the oil and gas sector.  The handpicked 

scenario chosen by Miu and Ozdemir (2009) is defined as a one standard deviation increase in the 

quarterly change in real GDP coupled with one standard deviation decreases in the annual change 

in global oil demand and the annual change in Scotiabank All Commodity Index.  Obviously care 

must be taken to ensure that any handpicked scenarios are realistic and plausible. 

Perhaps no one has advanced the theory of stress testing more than a series of papers that 

includes Breuer (2008), Breuer et al. (2009), Breuer and Csiszar (2010), Breuer et al. (2012), and 

Breuer and Csiszar (2013).  In these papers, the authors develop models and methods for 

identifying plausible worst case scenarios for stress testing portfolios.  These methods do not 

involve handpicked scenarios, but rather, are identified quantitatively using the concept of relative 

                                                           

3 See, for example, Fender et al. (2001) or the report from the Committee on the Global Financial System (2005) for analysis of survey 

data related to banks’ use of stress testing models and scenarios. 
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entropy and the Maximum Loss Theorem (MLT)4.  In the following section, the concept of 

relative entropy is discussed within the context of Information Theoretic (IT) econometric 

estimation and is then related directly to the dual of a model presented in Breuer and Csiszar 

(2013) (hereafter B&C) that is a direct result of the MLT. 

2.1 Kullback-Leibler Divergence 

Following Golan (2006), a (primal) generalized IT optimization problem in probability space can 

be expressed as 

�̅∗ = argmin{�
+1� (�̅ ∥ �)} 
   s.t. ��(�, �, �̅) = [�],� = 1,2, . . " �̅′$ = 1 �̅ ≥ 0 

 

(1) 

Here, �
+1� (�̅ ∥ �) is Rényi’s (1961) measure of relative entropy between two discrete probability 

distributions �̅ and p given δ.  The constraints of the primal problem are a set of M zero moment 

consistency equations, ��(. ), parameterized by vectors of data, y and x, and the estimated 

probabilities, �̅, and constraints that ensure the probabilities are proper probabilities (i.e. sum to 

unity and non-negative).  The model presented above is a generalization of models initially 

presented by Kitamura and Stutzer (1997) and Imbens et al. (1998). 

Rényi’s (1961) relative entropy is given by the function �
+1� (�̅ ∥ �) = − 1( log[1 +
,(, + 1)�
-�(�̅ ∥ �)] where �
-�(�̅ ∥ �) denotes Cressie-Read (1984) relative entropy.  As shown 

in Golan (2002), when / → 0, �
+1� (�̅ ∥ �) reduces to Kullback-Leibler (KL) relative entropy or 

the KL divergent measure �12(�̅ ∥ �) = ∑ 45̅ ln(7̅̅̅̅;7;)5 5.  Under these conditions and assuming there 

are n possible states and a single moment consistency equation for data given by the vector l, the 

primal generalized IT optimization problem (1) can be expressed as 

min�12(�̅ ∥ �) = �̅′>?(�̅�), 
s.t. �̅′B = C(>), �̅′$ = 1 �̅ ≥ 0. 

(2) 

                                                           

4 Relative entropy is a broader concept than KL divergence although here, the two terms are used interchangeably. 
5 In the IT econometric literature, KL divergence, as developed by Kullback and Leibler (1951), is often referred to as Shannon cross 

entropy in honor of Shannon (1948).  As our interest here is in comparing the relative entropy or divergence between two probability 

distributions, we maintain the KL divergence descriptor. 
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If >5D B represents portfolio losses in the ith state, then C(>) is the total expected loss on the 

portfolio under a given worst case scenario.  The vector of (worst case) probabilities to be 

estimated,	��, are chosen relative to the reference distribution, �, and C(>), both of which are 

exogenous in the model specification.  The system presented in (2) is a primal representation of 

the dual optimization problem presented by B&C in their development of the MLT.  To see this, 

consider that the Langragian equation for the primal constrained optimization IT problem given 

above in (2) is 

ℒ = ∑ 45̅>? (45̅45)
G

5=1
+ H ̅(C(>) − ∑4̅5>5G

5=1
) + K̅(1 − ∑4̅5G

5=1
) (3) 

where H ̅and K ̅are Langrange multipliers.  There are n+2 first order conditions (FOCs) given by 

the expressions: 1 +  ln(7̅̅̅̅;7;) − H>̅5 − K̅ = 0, ∀ M = 1,2,… , ?, C(>) − ∑ 45̅>5G5=1 = 0, and 1 − ∑ 45̅G5=1 =
0, the simultaneous solution of which results in the optimal minimizing values 45̅, H,̅̅̅̅̅ and K.̅ 

Due to the nonlinearity of the FOCs, analytic solutions are not possible and the problem 

must be solved numerically.  However, optimality implies that the stressed probabilities can be 

expressed as a function of the optimal multipliers as well as the reference probabilities, or 

45̅ = 45OP4(H>̅5 + K̅ − 1) = 45OP4(H>̅5)∑ 4SOP4(H>̅S)GS=1
. 

 

(4) 

These stressed or worst case probabilities are the same as those presented in B&C under the 

MLT6.  Additionally, the denominator in (4) is known as a partition function in the entropy 

literature and is related to the function Λ(H) from B&C, namely, ∑ 4SOP4(H>̅S)GS=1 = OP4 (Λ(H)̅). 
The relationship between primal and dual optimization problems can be exploited to 

formally link the two approaches (see for example, Agmon et al., 1979).  Worst case scenario 

probabilities in (4) substituted into the KL divergence objective function in (2) yields 

�̅̅̅̅̅12(�̅ ∥ �) = ∑⎣⎢
⎡ 45 OP4(H>̅5)

OP4 (Λ(H)̅)⎦⎥
⎤ × ln⎣⎢

⎡ OP4(H>̅5)
OP4 (Λ(H)̅)⎦⎥

⎤
5

. 
 

(5) 

Rearranging terms, it follows that equation (5) can be rewritten as 

                                                           

6 See p. 1556 of Breuer and Csiszar (2013). 
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�̅̅̅̅̅12(�̅ ∥ �) = ∑⎝⎜
⎛ 45 OP4(H>̅5)

OP4 (Λ(H)̅)⎠⎟
⎞

5
× [H>̅5 −Λ(H)̅]  

               = H ̅∑⎝⎜
⎛45>5 OP4(H>̅5)

OP4 (Λ(H)̅)⎠⎟
⎞

5
− Λ(H)̅,  

= HΛ̅′(H)̅ −  Λ(H)̅ (6) 

which is precisely: �̅̅̅̅̅12(�̅ ∥ �) = f, the equation outlined by B&C in their application of the 

MLT.7  It is the numerical solution of this equation that yields H = H ̅from which the stressed 

probabilities can be calculated.  It is also clear that at H = H,̅ �̅̅̅̅̅12(�̅ ∥ �) = f and the plausibility 

parameter exogenous in B&C’s model specification is precisely the KL divergence in the primal IT 

model presented here.  This linkage implies that a vector of worst case scenario probabilities �̅ 

could be estimated relative to a reference distribution consistent with a historical or non-stressful 

period given an expected loss with the resulting estimate of the KL divergence providing a (now 

endogenous) measure of the scenario plausibility.  This idea was originally suggested by B&C and 

is empirically explored below with reference to the BOG DFAST scenarios. 

It is also the case that the optimal probabilities parameterized by H = H ̅as in equation (4), 

when substituted into the primal Lagrangean equation (3) represent the unconstrained dual 

associated with the primal problem presented in (2).  The dual is unconstrained because the 

partition function ensures the probabilities sum to one at H = H ̅and therefore the probability 

summation equation is not needed.  Making these substitutions, the Lagrangean is 

ℒ ̅= ∑4̅5(H)̅ln (45̅(H)̅45 )G
5=1

+ H ̅(C(>) − ∑ 4̅5(H)̅>5G
5=1

), (7) 

for the unconstrained dual.  After substituting for the 45̅(H)̅ using (4) and simplifying, ℒ ̅=
HC̅(>) − Λ(H)̅ results.  Differentiating with respect to H ̅yields the single FOC for an optimum of 

the dual problem, namely,  C(>) − Λ′(H)̅ = 0.  Therefore, optimality implies that Λ′(H)̅ is the 

expected (maximum) loss as required by the MLT and shown in B&C.8  

 

3 Empirical Examples 

                                                           

7 See equation (3) of Theorem 1 on page 1554 of Breuer and Csiszar (2013). 
8 Maximum expected loss results because the dual optimization problem is a maximization problem.  This is consistent with the primal 

optimization problem given in (2) as a minimization problem. 
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3.1 Example 1 

Breuer and Csiszar’s (2013) data9 are presented here as an example of the estimation of stressed 

default probabilities.  The input data for their MLT method are given in the first two rows of 

Table 1 which show estimated percentage losses and historical transition probabilities over six 

possible credit ratings (i.e. n = 6).  For comparison purposes, presented in the third row of Table 

1 are the worst case scenario transition probabilities estimated by B&C (denoted 4̅5 (B&C)) while 

shown in the fourth and fifth rows of the table are the worst case scenario transition probabilities 

estimated using a numerical implementation of the MLT (fourth row) and the primal KL 

divergence IT model outlined above in (2) (fifth row).  In the former case, H ̅is estimated 

numerically given the data and the plausibility parameter f = 2 from which the 45̅ are calculated 

as shown above in (4).  In the latter case, the 45̅ are estimated directly via the optimization 

problem in (2) above with the objective function value providing the estimate of f.  As expected, 

the MLT and KL divergence IT models result in identical worst case scenario transition 

probabilities that are within rounding of the estimates reported by B&C.    

Concentrating on the results associated with the MLT and KL divergence methods 

appearing in rows four and five in Table 1, the moment consistency equation implies the stressed 

expected loss, ∑ 45̅>5G5=1 = C(>) = 18.74% (compared to the historical or normal expected loss of 

∑ 45>5G5=1 = C(>) = 0.36%) which is identical to the MLT estimate of the maximum loss given by 

Λ′(H)̅ when H=̅13.49.  As the parameter H ̅is a multiplier for the moment consistency equation in 

the primal constrained optimization, the value shows the marginal impact on the objective 

function, in the IT case, KL divergence, from knowledge of the expected loss.  With H ̅ > 0, 
increasing C(>) increases KL divergence by inducing more stressed probabilities (i.e. more 

probability mass concentrated on the lower credit rating states).  One additional set of worst case 

scenario probabilities is presented in the sixth row of Table 1 showing an expected loss C(>) =
32.42%.  For this example, the estimated multiplier is H ̅ = 15.76 while the objective function value 

(KL divergence) is 4. 

As noted above, the MLT results are consistent with an exogenously specified f=2 whereas 

the primal IT model results in an estimate of KL divergence, �̅̅̅̅̅12, equal to 2.  The absolute 

worst case scenario for the data in this problem is one in which all the probability mass is 

concentrated on the state with the worst possible loss, namely the default state with an expected 

loss of 51.8%.  This implies that the maximum value for k and hence the most stressful scenario 

                                                           

9 See Table 1 on p. 1556 of Breuer and Csiszar (2013). 
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for this specific problem and data has KL divergence equal to �̅̅̅̅̅12 = ∑ 45̅>?(7̅̅̅̅;7;)5 = 1 ×
>?( 10.06%) = 7.4186.  Therefore, no feasible solutions to B&C’s implementation of the MLT exist 

for scenarios defined by f > 7.42 because obligors default with certainty.  

To summarize, the MLT requires an exogenous plausibility parameter, k, from which the 

multiplier H ̅is estimated via the dual optimization problem.  With the estimate of H ̅̅̅ ̅̅in hand, 

stressed probabilities 45̅ can be calculated directly as can the maximum expected loss C(>).  The 

duality between the two entropic specifications implies that under the primal IT approach, it 

is C(>) that is exogenously specified with the stressed probabilities and multiplier H ̅estimated 

directly by minimizing KL divergence.  The estimate of KL divergence is the objective function 

value and precisely k, the plausibility parameter from the MLT. 

One potential advantage of the dual approach is that portfolio managers can more easily 

articulate expected losses when conducting stress testing than they can scenario plausibility.  In 

addition, there is a linkage between f and Value-at-Risk (VaR) α-significance according to the 

MLT.  Namely, the maximum loss given by  Λ′(H)̅ dominates Tail-VaR at the level OP4(−f).  
This implies that, for example, 99 % VaR with α = 1% implies f = 4.61 will create at least as 

stressful a scenario in terms of credit losses.  While merely examples, these values provide much 

needed context for quantifying the extent of stress implicit in a choice of expected losses or the 

plausibility parameter.  Further, they provide much needed context for assessing the plausibility 

of DFAST scenarios since each scenario has a time path of associated KL divergence that can be 

empirically measured. 

3.2 Example 2 

Having demonstrated the theoretical and empirical complementarity between the dual MLT and 

primal KL divergence methods, another example is presented here wherein estimated KL 

divergence is used to assess the extent to which two probability distributions differ.   In a recent 

article by Varotto (2012), credit losses associated with historical stress scenarios are explored to 

determine whether regulatory capital and capital requirements under the so-called Basel 3 

agreement suggest adequate protection.  In Table 2 of Varotto (2012), Moody’s credit migration 

matrices for corporate bonds and loans are presented under average (1921-2009), Great Recession 

(2008-09), Great Depression (1931-35), and worst case (1932) scenarios. 

Mobility measures attributable to Jafry and Schuermann (2004) (JS) are also presented in 

Varotto (2012) and indicate that the increase in JS mobility is nearly (over) double for the Great 
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Recession (Great Depression) scenario relative to the average scenario.  The worst case (i.e. 1932) 

scenario is suggestive of nearly a fourfold increase in JS mobility relative to the average scenario.  

Kullback-Leibler divergence can also be used to gauge the severity of a scenario since relative 

entropy by definition measures the extent of uncertainty or disorder in a distribution or system.  

More specifically, KL divergence is a measure of comparability between two probability 

distributions and is, therefore, a complementary measure to JS mobility. 

Using the average migration matrix presented in Varotto (2012) as the reference 

distribution of transition probabilities, it follows that �12 = 0 since there is no disorder in the 

average matrix relative to itself.  Shown in Table 2 below are the transition probability and credit 

rating specific relative entropies for the three scenarios identified by Varotto (2012).  Values in the 

table that are further from zero are indicative of more divergence between the two distributions 

and therefore, more stress relative to the average scenario.  As shown in Panel A, the credit rating 

exhibiting the greatest disorder relative to the average for the Great Recession scenario (2008-09 

average) is Aaa with an overall KL divergence of 0.1547.  While the disorder associated with a 

reduction in the retention transition probability cannot be ignored, the main source of disorder 

stems from the transition probability associated with a downgrade from Aaa to Aa (0.2995).  The 

remaining numbers can be interpreted similarly.  Total KL divergence for the Great Recession 

scenario is also shown and suggests that �12 = 0.50. 
The preceding results are in contrast to the Great Depression scenario (1931-35 average) 

shown in Panel B of Table 2 wherein the most disorder appears to be related to the reduction in 

the retention probability, downgrade, and default of Ba, B, and Baa rated debt.  Whereas most of 

the stress from the Great Recession appears to have been related to highly rated debt being 

downgraded, the Great Depression scenario was characterized more by the downgrade of less 

highly rated debt.  Although not surprising, it is, however, also worth mentioning that the Great 

Depression scenario results in KL divergence equal to �12 = 0.7140 > 0.5053 and obviously 

represents a more disordered or stressful scenario than the Great Recession scenario. 

The worst case scenario (1932) shown in Panel C of Table 2 exhibits the greatest 

divergence of the three scenarios with an overall KL divergence equal to �12 = 3.3512.  The 

magnitude of this number alone is suggestive of how stressful the year 1932 was relative to the 

historical average.  It should also be noted that approximately 40% of the total KL divergence in 

the worst case scenario stems from disorder associated with Baa rated debt downgrades and Ba 

rated debt downgrades and defaults.  Even so, only about 10% of the total KL divergence for the 
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worst case scenario is attributable to Aaa and Caa-C rated debt implying that debt not rated high 

or low quality contributed significantly to the financial stress in 1932. 

One caveat regarding the KL divergence estimates presented above for the Great 

Recession and Great Depression scenarios is that they are derived from probabilities that were 

averaged over the indicated number of years (2008-09 for the former and 1931-35 for the latter).  

This naturally has a smoothing effect that results in an understatement of the precise extent of 

the divergence.  Presented in Table 3 are annual KL divergence estimates for Moody’s and Fitch 

Global Corporate ratings for 2007 to 2013.  For the Moody’s ratings, average migration matrices 

from 1920-2013 and 1970-2013 are used as reference distributions while for the Fitch ratings, the 

period from 1990-2013 was used.  In each case the KL divergence increases markedly in 2009 as 

global credit conditions deteriorated during the Great Recession.   

Closer inspection of the estimated relative entropies of each rating class in Table 3 reveals 

that approximately 60% of the KL divergence in 2009 was due to Aaa to Aa (Moody’s) and AAA 

to AA (Fitch) downgrades and transitions from Ca-C (Moody’s) and CCC-C (Fitch) to the 

default state.  Also shown in Table 3 is another indication of just how stressful the year 2009 was 

for credit markets.  For the Moody’s data, the maximum KL divergence for Ca to C rated debt is 

1.23 (0.82) when using the 1920-2013 (1970-2013) average migration matrix as the reference 

distribution.  As shown, calculated relative entropy for Ca to C rated debt is in excess of the 

maximum that would induce certain default.   Overall, these estimates suggest that during normal 

times, �12 < 0.5 on average and in the worst year of the Great Recession (i.e. 2009), �12 ≥
1 suggesting divergence spiked to levels around one (Fitch) or higher (Moody’s).   By contrast, the 

worst year of the Great Depression (i.e. 1932), �12 > 3 using Varotto’s (2013) data.  These 

values provide some context for the analysis and results presented below.  As an aside, the 

handpicked scenario reported by Miu and Ozdemir (2009) and described above results in �12 =
0.92 which is of a magnitude that is reasonably consistent with the Great Recession scenario.    

 

4 Severity of DFAST Scenarios 

The preceding examples demonstrate how KL divergence can be empirically estimated and used as 

a measure of the disorder or the extent of divergence between two empirical probability 

distributions.  The relative entropy approach applied to measure the extent of stress implied by 

DFAST then requires an estimate of a joint distribution of macroeconomic factors using, for 
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example, historical data from which the KL divergence can be estimated under each DFAST 

scenario using the IT approach discussed previously.  The most recent DFAST scenarios were 

released by the Federal Reserve in October 2014 for a total of 16 domestic macroeconomic 

variables and 12 international variables.  Shown in Table 4 is a list of the domestic 

macroeconomic variables along with short descriptions of the variables and data sources.  These 

data consist of six measures of economic activity and prices, four aggregate measures of asset 

prices or financial conditions, and six measures of interest rates. 

Shown in Figures 1 and 2 are phase diagrams depicting historical and scenario driven 

paths for several of the domestic DFAST macroeconomic variables.  In most cases, it appears that 

the base and adverse scenarios are more or less what one would expect given their descriptions.  

For example, all four panels show base scenarios that are well within the confines of the historical 

movement of each of the variables.  Similarly, the adverse scenarios shown in each of the panels 

depart significantly from history when compared to the base scenarios, but in general appear to be 

visually stressful while not implausible. 

The severely adverse scenario, however, appears to be quite stressful in that it suggests 

departures from historical levels that, at least visually, appear to be fairly significant.  Perhaps 

more importantly, as shown, the departures are for extensive periods of time.  For example, in 

Panel A of Figure 1, significant negative nominal GDP growth is shown for the severely adverse 

scenario in conjunction with nominal 10-year treasury yields that are also quite low.  Highlighted 

in Panel A of Figure 1 are Q4: 2008 and Q1: 2009 for reference showing lower levels of nominal 

GDP growth at considerably higher levels of nominal 10-year Treasury yields.  Similarly, nominal 

10-year treasury yields are shown in Panel B of Figure 1 relative to the commercial real estate 

index.  Again, the severely adverse scenario appears to depart significantly from the historical 

data but also does so for an extended period of time.  Perhaps the most striking depiction is 

shown in Panel A of Figure 2 where the VIX index is plotted against nominal year-over-year 

growth in the Dow Jones index.  As shown, the severely adverse scenario is fully outside the 

bounds of the historical data going back to 1990, the first year for the VIX. 

Using data for a slightly longer time period, unemployment and year-over-year growth in 

nominal GDP are shown in Panel B of Figure 2.  In this case the severely adverse scenario mimics 

the phase path of late 2008 into early 2009 albeit at a significantly higher level of unemployment 

(8-10% rather than 6-8%).  The recovery from this scenario appears to split the difference between 

the paths associated with GDP growth and unemployment in 2009 (below the severely adverse 
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scenario path) and the phase path associated with the late 1982 to early 1983 recovery period 

(above the severely adverse scenario path). 

While there is no finite set of macroeconomic variables that can provide a perfect 

characterization of the economy, the variables listed in Table 4 can likely provide an adequate 

characterization for the purposes of determining the inherent level of stress implied by DFAST 

scenarios.  As a practical matter, the estimation of a joint density necessitates careful 

consideration of only a few variables given the numerical intensity of the process.  Therefore, a 

subset of the macroeconomic variables in Table 4 consisting of the real rate of growth in GDP, the 

unemployment rate, real 10-year Treasury yields, and the real rate of growth in the Dow Jones 

index were used to estimate the joint distribution. 

To arrive at this subset of variables, the international variables were explicitly ignored and 

real values were deemed preferable to nominal values thereby eliminating the nominal GDP and 

disposable income growth variables.  The six interest rates are all highly correlated so the 10-year 

Treasury yield was chosen as representative due also to its importance for residential and 

commercial real estate lending.  The effects of the equity market are accounted for by the 

selection of the Dow Jones index which was subsequently converted to a rate of growth.  The 

volatility index was eliminated from consideration due to its low rate of use in stress testing 

according to Fender et al. (2001).10  Treasury yields and the rate of growth in the Dow were 

converted to real rates using the DFAST Consumer Price Index macroeconomic variable. 

Shown in Figure 3 are the (recent) historical and scenario paths for the real rate of growth 

in GDP, unemployment rate, the real yield on 10-year Treasuries, and the real rate of growth in 

the Dow Jones industrial average.11  The three scenarios: baseline, adverse, and severely adverse 

are also shown for the last quarter of 2014 and the two subsequent years and represent the BOG’s 

quarterly value for this macroeconomic variable under each DFAST scenario.  Again, it appears 

that the baseline scenario is a fairly benign scenario while the adverse scenario injects what 

appears to be a plausible amount of stress.  The severely adverse scenario however, appears to be 

characterized by a considerable amount of stress for a relatively long period of time.  Whether 

these scenarios and their duration are plausible is the topic of this section. 

                                                           

10 It is likely that a model that includes the VIX increases KL divergence considerably given the phase paths shown in Panel A of 

Figure 2. 
11 Recall, the 10-year Treasury yield was converted to a real rate and the Dow Jones Stock Market Index was converted to a real rate 

of growth.  Subsequently, the base, adverse, and severely adverse values for both variables had to be converted as well using the BOGs 

DFAST CPI value under each scenario. 
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4.1 Joint Density Estimation 

The pure inverse IT optimization problem with zero moments shown above in (2) can be used to 

estimate the KL divergence of a given DFAST scenario by estimating the probabilities according 

to the general IT econometric problem 

�∗ = argmin{�12(� ∥ z∗)} 
   s.t. 

����, 
, �� = 
��, � = 1,2, … , � 

�′� = 1 

� ≥ 0. 

 

(8) 

Here, the elements of  p make up the discrete joint density and are chosen relative to the 

discrete joint (reference) density defined by z∗ subject to M moment consistency equations, 

adding up, and non-negativity constraints.  Notice that there is one moment consistency equation 

for each DFAST macroeconomic factor for each of the three BOG scenarios.  With four 

macroeconomic factors, the estimation of the discrete probabilities, 45S{| , in (8) is conducted a 

total of 39 times; once for each of the 13 quarters making up each of the three BOG scenarios. 

However, before estimating (8), the joint reference density, z∗, must be estimated.  

Empirical (marginal) distributions for each of the four macroeconomic factors discussed above 

were initially analyzed by fitting a histogram to each variable using historical data.  The 

estimated histograms are presented in Figure 4 with the summary statistics presented in Table 5.  

The bin size and hence the bin width for each histogram was determined by optimizing the L2 risk 

function as in Shimazaki and Shinomoto (2007).  In each case, the data shown on the x-axis for 

each histogram are the midpoints of the bins and also serve as the parameter supports for the 

estimation of the joint reference density, z∗, as well as the joint density, �, in (8). 

As shown in the bottom of Table 5, the macroeconomic variables are not independent and 

the estimation of z∗ should accommodate this feature of the data.   One way of capturing the 

(linear) correlation structure is to specify second (central or non-central) moment equations in 

addition to the moment consistency equations typical of IT estimation.  The resulting model is 

likely a stochastic IT optimization since the inclusion of higher moments make it increasingly 

difficult to match all the moments without error with a given set of data.  The following 

generalized IT model is used to estimate the reference joint density, z∗, by assuming first, second, 

and cross moment consistency 
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max D(z, �,�) = −z′>?z − �′>?� − �′>?� 
   s.t. 

z′� + �′� = �̂ 
z′�2 + �′� = �̂ z′$ = 1,�′$ = 1,�′$ = 1 �′� = 0, �′� = 0 z ≥ 0, � ≥ 0, � ≥ 0. 

 

(9) 

Here, total entropy is measured over the distribution of z as well as the vector of 

probabilities � and matrix � appearing in the various moment equations.  There are a total of 

four moment consistency equations made up of a vector of parameter supports, �, a matrix of 

error probabilities, �, an error support vector, �, and a vector of (exogenous) empirical means, �̂.  

As noted above, the vector of parameter supports are shown along the x-axis in each histogram in 

Figure 5 while the vector of empirical means is shown in Table 5.  The error support vector 

consists of positive and negative elements such that the sum-product of the error supports and 

estimated error probabilities yields a vector of errors that ensure a feasible solution can be found.  

Additionally, the errors constructed by �′�  are centered on zero (i.e. mean zero) as indicated by 

the constraints. 

The second and cross moments for each variable are matched with the empirical matrix of 

second and cross moments, �̂, (shown in Table 5) by optimally choosing the z and the matrix of 

(error) probabilities � given an error support vector, �.  As above, the error support vector � has 

both positive and negative elements that ensure a feasible solution can be found while the errors 

constructed by �′�  are mean zero.  The remaining equations simply ensure that all the 

probabilities are proper (i.e. non-negative and sum up to unity).  While the estimation of the 

reference distribution as in (9) is a critical input to the estimation of the KL divergence, 

�12(� ∥ z), appearing in (8), the results of the estimation of z are not presented here.12  More 

details on the density estimation in (9) appear in Appendix 1 and the specific 4-factor version of 

the IT estimation (8) in Appendix 2.   

4.2 DFAST Scenario Severity 

                                                           

12 The dimensions of the parameter support space as shown in the histograms in Figure 4 suggests that the optimal z∗ has 76,032 

probabilities not including the probabilities associated with the error terms appearing in the moment equations in (10). 
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As noted above, the DFAST scenarios are not meant to be taken as BOG forecasts, but rather 

plausible scenarios consistent with a baseline and two increasingly stressful alternatives.  

According to the BOG, the supervisory baseline scenario resembles the average predictions from 

surveyed forecasters and shows a moderate expansion in economic activity, with modest real GDP 

growth, modestly increasing equity, residential, and commercial real estate prices, decreasing 

unemployment, a gradual normalization of treasury yields, and low market volatility.  The 

supervisory adverse scenario is characterized by a global weakening in economic activity resulting 

in a mild recession, falling equity, residential, and commercial real estate prices, increased 

inflation, and a rapid increase in treasury yields.  The primary difference between the 2015 

adverse scenario and the 2014 adverse scenario is the latter’s suggestion of a steepening of the 

yield curve as opposed to an overall lifting of the curve.  Finally, the supervisory severely adverse 

scenario contemplates a deep and prolonged U.S. recession, with high unemployment and real 

GDP declining substantially.  Treasury rates remain low, while equity, residential and commercial 

real estate prices fall dramatically and exhibit substantial volatility. 

Shown in Table 6 are the time paths for estimated KL divergence for each quarter and 

scenario found by estimating the probabilities as described above using the IT estimation (8).  

The estimated �12(�∗ ∥ z∗) = �12∗ are plotted in the first three panels of Figure 5 along with 

the estimated �12∗
 from assuming that the joint distribution of macroeconomic variables is 

independent.13  As shown, the base scenario is quantified as more or less how the BOG describes 

the scenario, namely a benign scenario with low KL divergence.  Recall, KL divergence near zero 

is indicative of a distribution of stressed probabilities that differ only mildly from the reference 

distribution.  As shown in Figure 5, the estimated KL divergence for each scenario is higher when 

the correlation between the macroeconomic variables is taken into account.  Also, the base 

scenario has KL divergence that generally decreases over the relevant quarters regardless of the 

correlation between the macroeconomic variables. 

Given the magnitude of the estimated �12∗ the adverse scenario appears to offer a 

plausible level of stress while the severely adverse scenario is consistent with a considerably higher 

level of stress that may not even be plausible.  As shown in Panel B of Figure 5, the mild 

recession that characterizes the adverse scenario results in KL divergence that peaks around 1.0 

(correlated) and 1.4 (independent) and steadily falls over the remaining quarters making up the 

scenario. 
                                                           

13 If the macroeconomic factors are independent, the joint probabilities are simply the product of the marginal probabilities.  As shown 

in Schönbucher (2003), this is also analogous to the independence copula. 
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For comparison, recall that the Great Recession scenario as presented above suggests that 

�12∗ ≥ 1 as credit conditions worsened.14  By contrast, recall that the worst year of the Great 

Depression scenario resulted in an estimate of �12∗ = 3.35.  As shown, the severely adverse 

scenario has KL divergence in excess of 3.35 until Q4 2015.  Even so, the severely adverse scenario 

has an extreme amount of stress over the first year that eventually only settles to around �12∗ ≈
2.  As an additional point of reference, using B&C’s model and data, it was noted above that a 

total portfolio loss (i.e. all probability mass centered on the default state) would result in KL 

divergence of 7.42.  The BOG’s severely adverse scenario has the first three quarters around this 

level with the first quarter of 2015 well in excess implying default with certainty.   

To further add some context to the estimated KL relative entropies, shown in Panel D of 

Figure 5 are the expected (maximum) loss curves found by applying the MLT of B&C using the 

estimated KL relative entropies shown in Table 6.  As shown, an application of the base and 

adverse scenarios would result in credit losses of less than 5% (base) and 12% (adverse) that 

generally decrease over time to less than 10% for both scenarios.  By contrast, the severely adverse 

scenario implies much higher credit losses.  The severely adverse scenario has an infeasible level of 

expected credit losses given the KL divergence for the first quarter of 2015 (�12∗ = 8.36 > 7.42).  
Nonetheless, the expected credit losses are about 50% until Q4 2015 when they drop to and 

stabilize around 25% before subsequently dropping to around 15% by the end of 2017. 

Shown in Table 7 are the shadow prices for each of the moment consistency equations in 

each quarter under each scenario.  The reported values are relative entropies, that is, the relative 

contribution of each data point-constraint to the optimal objective function value.  Consequently, 

the multipliers reflect the information content of each constraint.  Since the constraints of the 

model represent the expected value of each of the macroeconomic variables, the multipliers give an 

indication of the impact on KL divergence from a marginal change in each expectation.  For 

example, the unemployment rate has negative (positive) multipliers for every quarter under the 

adverse and severely adverse (base) scenarios.  Since the model is oriented toward minimization, 

these estimates suggest that marginal increases in the BOGs projection of the expected 

unemployment rate will lead to higher (lower) KL divergence or more simply, more (less) stress 

under the adverse and severely adverse (base) scenarios.  Of particular note is the magnitude of 

multipliers under the severely adverse scenario during the latter half of 2015 through much of 

                                                           

14 Recall also that the example handpicked stress scenario presented in Miu and Ozdemir (2009) had ���∗ = 0.92 
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2016.  From Panel B of Figure 3 it can be seen that unemployment peaks around this time and 

remains at this exceptionally high level for much of the duration of the scenario. 

From these results it is clear that the baseline scenario is not at all stressful and is more or 

less consistent with the BOG’s description as a scenario characterized by historical levels for the 

macroeconomic variables modeled.  By contrast the adverse scenario induces an elevated level of 

stress whereby expected losses are likely to ramp up considerably but not necessarily to unrealistic 

or implausible levels.  In fact, the adverse scenario may not induce quite the level of stress that 

was experienced during the Great Recession.  However, the severely adverse scenario, mostly by 

virtue of the fact that the stress is so pervasive and unrelenting, may be too stressful for practical 

use.  It is possible that the level and perhaps more importantly the duration of stress implied by 

the severely adverse scenario causes substantive structural changes in the underlying economy 

that are not likely to be accounted for in any stress testing model developed by an institution and 

conditioned on historical data.  For example, Q1 2015 may be suggestive of a level of stress that 

induces certain default.  What happens after a significant number of institutions all experience 

certain default by obligors making up their portfolios is not altogether clear. 

4.3 Non-BOG Macroeconomic Variables  

Another use of the KL divergence approach outlined above is to use a variant of the IT estimator 

in (10) to generate data for use in stress testing models that is consistent with the level of stress 

implied by the BOG scenarios.  For some financial institutions the linkage between the specific 

macroeconomic factors prescribed by the BOG and the institution’s portfolio may be tenuous at 

best.  For example, a Midwestern commercial bank or perhaps a Farm Credit System bank with 

significant farm real estate exposure would have somewhat limited prospects for tying loan 

balances, losses, or credit rating migrations to any of the macroeconomic variables other than 

perhaps the 10-year Treasury yield.15  While the 10-year Treasury yield is known to correlate 

positively with commercial and agricultural mortgage rates as well as negatively with farm real 

estate values, it is farm real estate values that would be of most interest for a bank with farm real 

estate exposure.  While such institutions have the flexibility and authorization to choose farm real 

estate values as an appropriate macroeconomic factor, there are no scenario values put forth by 

the BOG for such a variable. 

                                                           

15 The Farm Credit System is comprised of a network of cooperative lenders that have the largest share of loans collateralized by farm 

real estate in the U.S. 
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Left with this, historical and/or handpicked scenarios would likely be used.  A relatively 

simple extension of the methods presented previously is developed here to demonstrate how KL 

divergence can be used to identify stress levels consistent with the BOG scenarios or at least help 

calibrate handpicked scenarios.  First, the joint distribution of quarterly cash corn prices in Iowa 

and farm real estate growth rates are estimated using the IT estimator presented in (10).  Since 

most farm real estate in Iowa is consistent with high quality land, cash rents and hence growth 

rates in value are positively related to the price of corn, an easily observed economic variable.  

The farm real estate growth rates used in this exercise are the District 7 growth rates reported 

quarterly by the Chicago Federal Reserve.  Shown in Figures 6 and 7 for comparison purposes are 

joint densities assuming independence (Figure 6) and positive correlation (Figure 7) between the 

two variables.  In the latter case, the empirical second and cross moments were matched as a part 

of the estimation to accommodate the historical positive correlation of 0.18 between the two 

variables. 

Using the joint density in Figure 8 as the reference distribution (�) and varying the levels 

of the two variables over their empirical ranges results in the KL divergence surface presented in 

Figure 9.  Using data going back to 1965, the empirical mean District 7 growth rate (Iowa cash 

corn price) is 1.94% ($2.50/bu).  As shown in Figure 8, the KL divergence is minimized around 

these mean values with more extreme values giving rise to higher levels of KL divergence.  

Sampling growth rates and corn prices from areas on the KL divergence surface that matches the 

BOGs scenario KL divergence would allow a bank to use levels for these variables that are 

consistent with the BOGs scenarios. 

As an example, an adverse scenario with �12(�∗ ∥ z∗) ≈ 1 suggests that appropriate 

variable values could come from a variety of areas along the surface in Figure 8.  Notice that the 

type of lending will determine whether a given scenario will consist of high or low corn prices.  For 

example, a stress scenario defined by a decline in land values for a crop producer would suggests 

low land value growth rates values and low corn prices while stress for an integrated swine 

producer might consist of low land growth rates and high corn prices.  The approach is flexible 

enough to handle either case. 

 

5 Conclusions 
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Since the passage of the Dodd Frank Wall Street Reform and Consumer Protection Act, many 

financial institutions have been developing and validating stress testing models and methodologies 

in preparation for annual and semi-annual stress testing.  However, to date little is known about 

the extent of the stress implied by the scenarios prescribed by regulators.  In this paper, Kullback-

Leibler divergence is suggested as a mechanism to assess how much stress is implied by each 

scenario by measuring the extent that regulators’ scenarios differ from historical standards. 

The results of the analysis presented here show that the regulator’s baseline scenario is 

more or less as advertised.  That is, a rather benign scenario that induces very little stress 

compared to historical standards.  The other two scenarios induce more stress with the severely 

adverse scenario consistent with considerable stress.  By way of historical comparison, the adverse 

scenario appears to be somewhat comparable to levels of stress consistent with at least the recent 

recession.  By contrast, the severely adverse scenario likely induces a level of stress that may be 

considerably worse than the worst year of the Great Depression.   The severely adverse scenario 

may actually be consistent with such an unprecedented level of stress that it may actually 

undermine its usefulness as a plausible scenario for use in stress testing. 

For financial institutions with exposure to industries or sectors of the economy that cannot 

be readily linked back to the DFAST macroeconomic variables, KL relative entropy may be 

especially useful.  For a set of macroeconomic variables that make more sense for these types of 

institutions than the DFAST macroeconomic variables, projecting quarterly values with relative 

entropy consistent with the DFAST scenarios is relatively straightforward.   

Additional research should be directed along at least two dimensions.  First, other 

(perhaps larger) subsets of macroeconomic variables could be explored to see whether better 

characterizations of the joint density are possible.  For example, a large bank with an 

international footprint would need to see a characterization of the macro-economy that includes 

some of the international economic variables that are a part of the regulator’s scenario projections.  

In addition, alternative characterizations of the correlation structure in the estimation of the joint 

density may offer improvement the methods presented here.  The severely adverse scenario is an 

extremely stressful scenario and it may be the case that under such levels of stress, the correlation 

between the macroeconomic variables is strengthened as a result.  The impact of such nonlinear 

correlation could be captured by measuring the extent of KL divergence from a copula estimated 

joint density.  
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Appendix 1 

Univariate and Multivariate Density Estimation 

Let � = [P1, P2,… , PG] be a parameter support vector for a single macroeconomic variable and 

� = [�1, �2, … , �G] be a discrete distribution of probabilities to be estimated.  The univariate 

probability density function estimation cast as a primal constrained optimization IT with non-

central moments is 

max D(z) = − ∑�5>?�55
 

                                               s.t. 

∑ �5
G

5=1
P5{ = K{,   ∀ f = 0,1,… , � 

�5 ≥ 0, ∀ M 
 

(A.1) 

where K0 = 1.  Zellner and Highfield (1988) discuss such an approach and conduct estimation with 

� =  4.  Wu (2003) reports on the efficiency of a model similar to that presented in (A.1) for the 

estimation of the distribution of U.S. income where the moments are updated sequentially rather 

than simultaneously. 

 Extending the model presented above to the simplest possible multivariate case (i.e. two 

variables) yields 

max D(z) = −∑ ∑ �5S>?�5SS5
 

                                               s.t. 

∑ ∑ P5{�SℎS5
= K{ℎ,   ∀ f = 0,1,…�,ℎ = 0,1,…� 

�5S ≥ 0, ∀ M, � 
 

(A.2) 

where K00 = 1.16   

                                                           

16 It is not likely that all the moment conditions can be met with strict equality with empirical data.  In such cases, error terms can be 

added to the moment equations such as � = ��′ where �′ = [�1, �2, … , �G] is an error support vector and � = [�1, �2, … , �G] is a 

probability distribution with ∑ �GG = 1 added as a constraint.  The estimation then involves finding the vector � as well as the vector 

� after adding −∑ �S>?�SS to the objective function.  To ease the notion associated with the current model, these features are left out 

of the model exposition. 
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Let H{ℎ denote the kth-hth multiplier and assuming � = � = 2 (i.e. first and second 

moments and cross moments), the Langrangian for the system (A.2) is 

ℒ = − ∑ ∑�5S>?�5SS5
+ ∑ ∑H{ℎ (∑∑ �5SS5

P5{�Sℎ − K{ℎ)
ℎ{

 
 

(A.3) 

The necessary conditions for an optimum consist of the nine constraints in (A.2) (since there are 

two variables and moments and cross moments up to second order) plus the following ?2 
equations 

−1 − >?�5S + ∑∑ H{ℎ (∑ ∑ P5{�SℎS5
− K{ℎ)

ℎ{
= 0 ∀ M, � = 1,…?. (A.4) 

Here, it is assumed there are � data points for each of the two variables and therefore �� 

probabilities, �5S to be estimated.  From (A.4), the optimal probabilities, �5S∗ , can be analytically 

expressed as a nonlinear function of the optimized Lagrange multipliers, H{ℎ∗ , namely 

�5S∗ = OP4 [∑∑ H{ℎ∗ (∑ ∑ P5{�SℎS5
− K{ℎ)

ℎ{
− 1]. (A.4) 

Given the nonlinearity inherent in (A.4), numerical procedures must be used to estimate the set of 

probabilities that simultaneously solve the ?2 + 9 first-order conditions.  
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Appendix 2 

4-factor DFAST KL Divergence IT Estimation 

The 4-factor stressed joint density estimation cast as a discrete primal constrained optimization IT 

problem with KL divergence is 

min�12(� ∥ z∗) = ∑∑ ∑ ∑45S{|>?(45S{|�5S{|∗ )
|�2{�1S��5��

 
                                               s.t. 

∑ �5 (∑ ∑∑ 45S{||�2{�1S��
)

5��
= � ̂

∑ �S (∑∑ ∑45S{||�2{�15��
)

S��
= �̂ 

∑ �{ (∑ ∑ ∑45S{||�2S��5��
)

{�1
= � ̂

∑ �| (∑∑ ∑ 45S{|{�1S��5��
)

|�2
= � ̂

∑ ∑∑ ∑45S{||�2{�1S��5��
= 1 

45S{| ≥ 0, ∀ M, �, f, > 
 

(B.1) 

Here, we seek a vector of discrete probabilities 45S{| relative to the reference distribution of 

probabilities �5S{|∗  that minimize the KL divergence subject to four moment consistency equations, 

an adding up equation that ensures the total density sums to one, and non-negativity constraints 

for the probabilities.  The �5S{|∗  are found in a first stage estimation of the model in Appendix 1.  

For the moment consistency equations, �5 represents the ith value of a parameter support vector 

for the real rate of growth in GDP such as   = [�1, �2,… , �� ]′ so that the expected value,  ′�, 

equals the (exogenous) GDP growth suggested by the Fed under a given scenario and denoted 

above as �.̂  The parameter support vectors for the unemployment rate, u, real 10-year Treasury 

yield, y, and real rate of growth in the Dow Jones industrial average, d, are defined analogously. 

The Langrangian for this pure inverse problem is 
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ℒ = ∑ ∑∑ ∑ 45S{|>?(45S{|�5S{|∗ )
|{S5

+ H¡ [� ̂− ∑ �5 (∑∑ ∑45S{||{S
)

5
]

+ H¢ [�̂ − ∑ �S (∑∑ ∑ 45S{||{5
)

S
]

+ H£ [�̂ − ∑ �{ (∑ ∑∑ 45S{||S5
)

{
]

+ H¤ [� ̂− ∑ �| (∑∑ ∑ 45S{|{S5
)

|
] + ¥ (1 − ∑ ∑ ∑∑ 45S{||{S5

), 
 

(B.2) 

from which there are ¦ × § × � × � + 5 first-order conditions (FOCs), namely, 

¨ℒ¨45S{| = 1 + >? (45S{�5S{|∗ ) − H¡�5 − H¢�S − H£�{ − H¤�| − ¥, ∀ M, �, f, > 
¨ℒ¨H¡ = � ̂− ∑ �5 (∑ ∑∑ 45S{||{S

)
5

 
¨ℒ¨H¢ = �̂ − ∑�S (∑∑ ∑45S{||{5

)
S

 
¨ℒ¨H£ = �̂ − ∑ �{ (∑∑ ∑ 45S{||S5

)
{

 
¨ℒ¨H¤ = � ̂− ∑ �| (∑ ∑∑ 45S{|{S5

)
|

 
¨ℒ¨¥ = 1 − ∑∑ ∑ ∑45S{||{S5

. 
 

(B.3) 

The simultaneous solution to the first ¦ × § × � × � FOCs are required to minimize KL 

divergence implying that 

45S{|∗ = �5S{|∗  OP4(H¡∗�5 + H¢∗ �S + H£∗�{ + H¤∗�| + ¥∗ − 1), ∀ M, �, f. 
 

(B.4) 

where the stars denote optimized values of the Lagrange multipliers.  The solutions to these FOCs 

may be written as  

45S{|∗ = �5S{|∗  OP4(H¡∗�5 + H¢∗ �S + H£∗�{ + H¤∗�|)Ω(ª∗; �∗) =, ∀ M, �, f. 
 

(B.5) 

where 
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Ω(ª∗; �∗) = ∑ ∑ ∑∑ 45S{∗ OP4(H¡∗�5 + H¢∗ �S + H£∗�{ + H¤∗�|)|{S5
 

 

(B.6) 

is a partition function that converts the relative probabilities to absolute probabilities.  The 

Lagrange multipliers on the moment consistency constraints are determined by the solution to the 

four simultaneous equations 

� ̂ = ∂ ln ­(ª; �)¨H¡ , �̂ = ∂ ln ­(ª; �)¨H¢ , � ̂ = ∂ ln­(®; �)¨H£ , � ̂= ∂ ln­(®; �)¨H¤ . 
 

(B.7) 

Given the Lagrangean and the FOCs above, it follows that  

¨2ℒ
(¨45S{|∗ )2 = (45S{|∗ )−1, 

 

(B.8) 

along the diagonal and zero otherwise.  Therefore, the Hessian matrix for ℒ is given by  

¯° = ⎣⎢⎡
1/41111∗ ⋯ 0⋮ ⋱ ⋮0 ⋯ 1/4��12∗ ⎦⎥⎤, 

 

(B.9) 

and is positive definite for 45S{|∗  >  0 ensuring a unique global minimum.



 

 

Table 1.  Breuer and Csiszar (2013) data and stressed transition probability estimation 

results. 

  

 k AA1-2 AA3 A BBB BB Default �� � !̅ 

#$  -3.20% -1.07% 0.00% 3.75% 15.83% 51.80%   
%$   0.09% 2.60% 90.75% 5.50% 1.00% 0.06% 0.37%  

%̅$ (B&C) 2 0.036% 1.34% 53.53% 5.37% 4.91% 34.8% 19.07% - 

%̅$ (MLT) 2 0.03% 1.33% 53.49% 5.38% 4.99% 34.78% 18.74% 13.49 

%̅$ (KL) 2 0.03% 1.33% 53.49% 5.38% 4.99% 34.78% 18.74% 13.49 

%̅$ (KL) 4 0.02% 0.73% 29.98% 3.28% 4.00% 62.00% 32.42% 15.76 
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Table 2.  Transition probability and rating specific Kullback-Leibler relative entropy (KL) for three credit stress scenarios. 

   

  Panel A:  Great Recession scenario (2008-09 average) 

 Aaa Aa A Baa Ba B Caa-C D KL 

Aaa -0.1460   0.2995   0.0000   0.0012   0.0000   0.0000   0.0000 0.0000 0.1547 

Aa   0.0000 -0.1000   0.1811   0.0017   0.0001   0.0000   0.0037 0.0039 0.0913 

A   0.0000 -0.0092 -0.0232   0.0542 -0.0023   0.0029   0.0005 0.0029 0.0258 

Baa   0.0000 -0.0008 -0.0151   0.0224   0.0007 -0.0010   0.0009 0.0055 0.0126 

Ba   0.0000   0.0000 -0.0015 -0.0074 -0.0716   0.0914   0.0275 0.0091 0.0475 

B   0.0000   0.0000 -0.0003 -0.0022 -0.0206 -0.0876   0.2129 0.0142 0.1164 

Caa-C   0.0000   0.0000   0.0000   0.0000   0.0000 -0.0027 -0.0857 0.1453 0.0569 

         0.5053 

  

 Aaa Aa A Baa Ba B Caa-C D KL 

Aaa -0.0907   0.0747   0.0733   0.0062   0.0000   0.0000   0.0000 0.0000 0.0634 

Aa   0.0119 -0.1078   0.0956   0.0509   0.0242   0.0033   0.0000 0.0041 0.0822 

A   0.0005   0.0088 -0.1298   0.1511   0.0641   0.0073   0.0000 0.0127 0.1148 

Baa   0.0007 -0.0007 -0.0082 -0.1304   0.2120   0.0358   0.0001 0.0210 0.1303 

Ba   0.0000   0.0000 -0.0009   0.0004 -0.1509   0.1900   0.0144 0.0962 0.1492 

B   0.0000   0.0000 -0.0005 -0.0020   0.0129 -0.1554   0.1757 0.1065 0.1372 

Caa-C   0.0000   0.0000   0.0000 -0.0011 -0.0043   0.0167 -0.0948 0.1204 0.0369 

         0.7140 
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 Aaa Aa A Baa Ba B Caa-C D KL 

Aaa -0.2101   0.2352   0.2485   0.0293   0.0000   0.0000   0.0000 0.0000 0.3029 

Aa   0.0062 -0.2884   0.5494   0.1809   0.1114   0.0124   0.0000 0.0158 0.5876 

A   0.0042 -0.0089 -0.2745   0.5777   0.2255   0.0309   0.0000 0.0204 0.5753 

Baa   0.0000   0.0000 -0.0139 -0.2764   0.7209   0.2107   0.0000 0.0114 0.6527 

Ba   0.0000   0.0000   0.0000 -0.0070 -0.2728   0.7228   0.0922 0.1085 0.6437 

B   0.0000   0.0000   0.0000   0.0000 -0.0196 -0.2468   0.5773 0.2175 0.5284 

Caa-C   0.0000   0.0000   0.0000   0.0161   0.0007 -0.0195 -0.0906 0.1538 0.0605 

         3.3512 

          
Scenarios are as defined in Vonatto (2012) with Kullback-Leibler relative entropy measured relative to Moody’s average migration matrix (1921-2009). 
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Table 3.  Annual Kullback-Leibler divergence estimates for Moody’s and Fitch Global Corporate 

Ratings by ratings class, 2007-13. 

Moody’s (1920-2013 reference distribution) 

 max KL 2007 2008 2009 2010 2011 2012 2013 

Aaa +∞ 0.0160 0.0162 0.2862 0.0119 0.0140 0.1511 0.0268 

Aa 7.19 0.0426 0.0423 0.1279 0.0130 0.1026 0.1977 0.0297 

A 6.88 0.0760 0.0124 0.0615 0.0080 0.0384 0.0557 0.0261 

Baa 5.83 0.0183 0.0121 0.0247 0.0393 0.0205 0.0335 0.0201 

Ba 4.25 0.0193 0.0415 0.0475 0.0353 0.0294 0.0212 0.0118 

B 3.22 0.0507 0.0686 0.0722 0.0414 0.0436 0.0469 0.0317 

Caa 2.04 0.0566 0.0615 0.1370 0.0290 0.0421 0.0229 0.0381 

Ca to C 1.23 0.1494 0.2630 1.0158 0.1509 0.2076 0.4229 0.5208 

Total - 0.4288 0.5177 1.7728 0.3288 0.4982 0.9520 0.7052 

         

Moody’s (1970-2013 reference distribution) 

 max KL 2007 2008 2009 2010 2011 2012 2013 

Aaa +∞ 0.0127 0.0808 0.2741 0.0082 0.0105 0.1416 0.0241 

Aa 8.03 0.0686 0.0286 0.0565 0.0124 0.0449 0.1206 0.0558 

A 7.37 0.0818 0.0095 0.0622 0.0071 0.0399 0.0572 0.0204 

Baa 6.32 0.0167 0.0111 0.0264 0.0274 0.0147 0.0254 0.0121 

Ba 4.45 0.0171 0.0376 0.0444 0.0312 0.0271 0.0184 0.0078 

B 3.18 0.0514 0.0588 0.0606 0.0417 0.0413 0.0391 0.0279 

Caa 1.93 0.0594 0.0594 0.1096 0.0315 0.0450 0.0256 0.0490 

Ca to C 0.82 0.1690 0.0886 1.0158 0.0570 0.0874 0.1823 0.2475 

Total - 0.4767 0.3745 1.6495 0.2165 0.3108 0.6102 0.4446 

         

Fitch (1990-2013 reference distribution) 

 max KL 2007 2008 2009 2010 2011 2012 2013 

AAA +∞ 0.0031 0.0396 0.2328 0.0028 0.0659 0.0659 0.0659 

AA 7.82 0.0127 0.0712 0.1160 0.0059 0.1607 0.0492 0.0731 

A 7.13 0.0220 0.0149 0.1203 0.0085 0.0253 0.0161 0.0057 

BBB 6.21 0.0062 0.0069 0.0363 0.0249 0.0066 0.0132 0.0145 

BB 4.42 0.0225 0.0270 0.0443 0.0300 0.0233 0.0224 0.0373 

B 3.84 0.0415 0.0368 0.0862 0.0200 0.0176 0.0187 0.0234 

CCC to C 1.32 0.1611 0.0797 0.3219 0.3403 0.0588 0.0140 0.1362 

Total - 0.2691 0.2762 0.9578 0.4324 0.3583 0.1996 0.3562 
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Table 4.  DFAST domestic macroeconomic variables, descriptions, and data sources.1 

Macroeconomic Factor Description Data Source 

Economic Activity and Prices 

Real Gross Domestic Product Percent change in real GDP at an annualized rate  Bureau of Economic Analysis 

Nominal Gross Domestic 

Product 

Percent change in nominal GDP at an annualized rate Bureau of Economic Analysis 

Unemployment Rate Quarterly average U.S. unemployment rate Bureau of Labor Statistics 

Real Disposable Income Percent change in nominal disposable personal income divided 

by the price index for personal consumption expenditures at an 

annualized rate 

Bureau of Economic Analysis 

Nominal Disposable Income Percent change in nominal disposable personal income at an 

annualized rate 

Bureau of Economic Analysis 

Consumer Price Index Percent change in the CPI at an annualized rate Bureau of Labor Statistics 

Asset Prices or Financial Conditions 

House Prices Seasonally adjusted index level CoreLogic 

Commercial Property Prices Commercial Real Estate Price Index (series FI075035503.Q) Federal Reserve Board 

Equity Prices End of quarter Dow Jones Stock Market Index Dow Jones 

U.S. Stock Market Volatility VIX converted to quarterly Chicago Board Options Exchange 

Interest Rates 

3-month Treasury Bill Quarterly average of 3-month Treasury bill secondary market 

rate discount basis 

Federal Reserve Board 

5-year Treasury Bond Quarterly average of the yield on 5-year U.S. Treasury bonds Federal Reserve Board2 

10-year Treasury Bond Quarterly average of the yield on 10-year U.S. Treasury bonds Federal Reserve Board5 

                                                           

1 Source: Board of Governors of the Federal Reserve System, “2015 Supervisory Scenarios for Annual Stress Tests Required under the Dodd-Frank Act Stress Testing Rules and the 

Capital Plan Rule,” October 23, 2014. 

2 Constructed for FRB/U.S. model by Federal Reserve staff based on the Svensson smoothed term structure model; see Lars E. O. Svensson (1995), “Estimating Forward Interest Rates 

with the Extended Nelson-Siegel Method,” Quarterly Review, no. 3, Sveriges Riksbank, pp. 13–26 
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10-year BBB Corporate Bond Quarterly average of the yield on 10-year BBB-rated corporate 

bonds 

Federal Reserve Board3 

Prime Rate Quarterly average of monthly series Federal Reserve Board 

30-year Fixed Rate Mortgage Quarterly average of 30-year fixed rates Federal Home Loan Mortgage 

Corporation 

                                                           

3 Constructed for FRB/U.S. model by Federal Reserve staff using a Nelson-Siegel smoothed yield curve model; see Charles R. Nelson and Andrew F. Siegel (1987), "Parsimonious Modeling 

of Yield Curves," Journal of Business, vol. 60, pp. 473-89.  Data prior to 1997 is based on the WARGA database.  Data after 1997 is based on the Merrill Lynch database. 
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Table 5.  Summary statistics for macroeconomic variables, Q1:1947 to Q2:2014. 

Statistics GDP1 Unemployment2 10-year Treasury3 Dow Jones4 

Minimum -10.10% 2.60% -4.63% -26.52% 

Maximum 16.58% 10.70% 13.38% 15.84% 

Mean 3.24% 5.83% 2.44% -1.76% 

Standard Deviation 3.93% 1.66% 2.78% 6.77% 

     

2nd Moments and 

Cross Moments 

    

 GDP Unemployment 10-year Treasury Dow Jones 

GDP 0.002599    

Unemployment 0.001847 0.003688   

10-year Treasury 0.000845 0.001600 0.000774  

Dow Jones 0.000065 0.000133 0.000672 0.004890 

     

Correlation 

Matrix 

    

 GDP Unemployment 10-year Treasury Dow Jones 

GDP 1.0000    

Unemployment -0.0912 1.0000   

10-year Treasury 0.0896 0.2273 1.0000  

Dow Jones 0.2390 0.1184 0.3499 1.0000 

                                                           

1 Real rate of growth in gross domestic product 
2 National rate of unemployment 
3 Real 10-year Treasury bond yield 
4 Real rate of growth in the Dow Jones Industrial Average 
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Table 6.  Quarterly estimated Kullback-Leibler divergence (�12(�∗ ∥ z∗)) for each DFAST 

scenario. 

  �12(�||z∗)  

Quarter Base Adverse Severe 

2014 Q4 0.0662 0.7773 7.0512 

2015 Q1 0.0742 0.9949 8.3588 

2015 Q2 0.0661 0.9357 6.8611 

2015 Q3 0.0609 0.9743 4.7658 

2015 Q4 0.0607 1.0163 2.7851 

2016 Q1 0.0533 0.8797 2.7359 

2016 Q2 0.0530 0.7394 2.7637 

2016 Q3 0.0530 0.6582 3.1003 

2016 Q4 0.0527 0.6573 3.2228 

2017 Q1 0.0475 0.6185 3.2575 

2017 Q2 0.0437 0.5710 2.4104 

2017 Q3 0.0478 0.5237 2.2626 

2017 Q4 0.0439 0.4675 1.6439 
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Table 7.  Estimated Lagrange multipliers (shadow prices) on moment consistency equations by DFAST scenario and quarter. 

 Base Adverse Severe 

Quarter GDP UNEM 10YTY DJIA GDP UNEM 10YTY DJIA GDP UNEM 10YTY DJIA 

Q3: 2014 -1.14 -0.54 10.29 -1.30 15.73 -10.46 13.16 12.29 34.06 -19.55 261.80 54.15 

Q4:2014 -0.69 1.55 11.23 -0.86 19.28 -20.09 14.16 12.36 55.67 -42.55 55.91 80.79 

Q1:2015 -0.68 3.69 10.33 -0.80 13.76 -25.99 16.15 12.73 33.98 -67.75 27.42 63.66 

Q2:2015 -0.68 5.87 9.44 -0.68 11.82 -30.04 18.21 12.73 29.74 -116.77 21.41 30.63 

Q3:2015 -0.69 10.46 7.67 -0.75 11.34 -34.27 15.18 13.29 20.34 -767.86 17.07 3.52 

Q4:2015 -0.68 10.46 6.81 -0.66 8.98 -38.72 13.28 11.22 7.12 -727.08 22.62 -10.54 

Q1:2016 -0.67 10.46 6.82 -0.55 7.11 -41.05 11.42 8.86 7.12 -690.95 25.03 -10.11 

Q2:2016 -0.69 12.87 5.13 -0.56 4.80 -41.05 9.64 8.16 -1.14 -737.37 23.80 -18.10 

Q3:2016 -0.69 12.88 5.15 -0.38 4.34 -43.47 7.90 7.63 -1.14 -786.76 21.45 -20.97 

Q4:2016 0.22 12.87 4.32 -0.34 4.34 -43.47 7.05 6.79 -5.24 -155.41 20.31 -28.78 

Q1:2017 0.22 12.87 3.50 -0.33 3.88 -43.48 4.56 5.99 -5.23 -117.03 17.09 -19.39 

Q2:2017 0.68 12.87 4.33 -0.12 3.42 -43.47 2.93 4.68 -5.23 -96.61 15.04 -21.04 

Q3:2017 0.68 12.87 3.51 -0.12 2.51 -43.48 1.31 2.03 -5.24 -82.90 14.06 -13.47 
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Figure 1.  Phase graphs for DFAST macroeconomic variable data as released (2001:Q1 to 2017:Q4) for 

nominal 10-year treasury yield vs. nominal GDP growth (panel 1) and nominal 10-year treasury yield vs. 

commercial real estate index (panel 2). 
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Figure 2.  Phase graphs for DFAST macroeconomic variables: unemployment and VIX as released and 

constructed DJ and GDP year-over-year growth.  Data are from 1990:Q1 for nominal Dow Jones Stock 

Index year-over-year growth vs. VIX Index (panel 1) and 1948:Q1 for nominal GDP year-over-year growth 

vs. unemployment (panel 2).  
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Figure 3.  Historical and DFAST scenarios for real GDP growth (panel 1), unemployment rate (panel 2), real 10-year treasury yield 

(panel 3), and real rate of growth in the Dow Jones Stock Market Index (panel 4). 
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Figure 4.  Estimated histograms for real GDP growth (panel 1), unemployment rate (panel 2), real 10-year treasury yield (panel 3), and 

real rate of growth in the Dow Jones Industrial Average (panel 4) from quarterly data, Q1:1947 to Q2:2013. 
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Figure 5.  Panels 1-3: estimated quarterly KL Divergence for base, adverse and severely adverse DFAST scenarios assuming independent 

and correlated macroeconomic factors.   Panel 4: expected (maximum) credit losses implied by each DFAST scenario.  
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Figure 6.  Empirical frequency distribution for the rate of growth in 7th district farm real estate 

values and the price per bushel of corn in Iowa assuming independence. 

 

Figure 7.  Estimated joint density for the rate of growth in 7th district farm real estate values and 

the price per bushel of corn in Iowa assuming empirical correlation equal to 0.1833. 
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Figure 8.  Estimated Kullback-Leibler relative entropy between the rate of growth in 7th district 

farmland value and the price per bushel of corn in Iowa. 
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